
Client Classification Policies for SLA Enforcement in Shared Cloud Datacenters

Mario Macı́as and Jordi Guitart

Barcelona Supercomputing Center and Universitat Politecnica de Catalunya
Jordi Girona 29, 08034 Barcelona, Spain

{mario.macias, jordi.guitart}@bsc.es, {mario, jguitart}@ac.upc.edu

Abstract—In Utility Computing business model, the owners
of the computing resources negotiate with their potential clients
to sell computing power. The terms of the Quality of Service
(QoS) and the economic conditions are established in a Service-
Level Agreement (SLA). There are many scenarios in which the
agreed QoS cannot be provided because of errors in the service
provisioning or failures in the system. Since providers have
usually different types of clients, according to their relationship
with the provider or by the fee that they pay, it is important
to minimize the impact of the SLA violations in preferential
clients. This paper proposes a set of policies to provide better
QoS to preferential clients in such situations. The criterion
to classify clients is established according to the relationship
between client and provider (external user, internal or another
privileged relationship) and the QoS that the client purchases
(cheap contracts or extra QoS by paying an extra fee). Most
of the policies use key features of virtualization: Selective
Violation of the SLAs, Dynamic Scaling of the Allocated
Resources, and Runtime Migration of Tasks. The validity of
the policies is demonstrated through exhaustive experiments.

I. INTRODUCTION

The Utility Computing business model is increasing its
acceptance [1] thanks to the burst of Cloud Computing [2].
In Utility Computing, the users of the resources are not nec-
essarily their owners: users run their applications or services
in remote data centers and pay a fee in function of the usage.
The terms of the Quality of Service (QoS) to be provided
and the economic conditions are established in a Service-
Level Agreement (SLA). Utility Computing allows users to
benefit from economies of scale by minimizing the space
and maintenance costs. In this scenario, companies that own
their computing resources may decide to hire out the spare
resources of their data centers to external users [3]. The
price that external users pay to use the resources contributes
to amortize the cost of the data centers. However, a binary
classification of the users as internal/external is not accurate
enough in many situations. For example, headquarters of
a big company may classify the users of its data centers
according to different levels: users from the headquarters that
owns the resources are completely internal, users from other
companies are completely external, and users from other
headquarters of the same company have an intermediate
range. Even multinationals could define more degrees of

proximity for headquarters in the same country and head-
quarters in other countries. Whilst completely external users
pay a fee and completely internal users use the resources for
free, the users in between would pay a reduced fee that does
not report profit, but encourages each location to only use
resources from external locations when strictly necessary.

Another example of intermediate users are those from
trusted entities that share their computing resources to share
risks and deal with peaks of workload without the need
to overprovision resources. Examples of trusted entities are
different companies from the same business cluster [4].

Another criterion to classify clients is the QoS that they
have purchased. For example, Spotify [5] is an online music
provider that classifies its clients in three categories (free,
unlimited, and premium) according to their monthly fee. The
higher the fee the more services and QoS: unlimited stream-
ing hours, high quality of sound or available downloads. The
provider must consider the purchased QoS when allocating
the resources and managing the SLAs.

The usage of the resources by external users can affect the
QoS of internal users if the SLAs do not reflect priorities
between clients in terms of allocation and management of
resources. This paper suggests applying Client Classification
to keep high QoS to internal users or users with high QoS
requirements. Client Classification considers the information
about the users when giving them access to the resources and
prioritizes some SLAs according to two criteria:

QoS that the users have purchased: the higher the QoS
range, the higher the price. This is the traditional classifica-
tion of services in Utility Computing.

Affinity between the client and the provider: clients from
the same company as the provider or from entities that have a
privileged relationship with the provider can hire the services
at better prices, better QoS, or any other privilege. This novel
approach was devised with the success of Cluster and Grid
Computing, in which organizations share part of their re-
sources with users from other organizations. By prioritizing
users to which there is high affinity, organizations can ensure
that their internal users will have enough resources or QoS
when there is a peak of external demand.

Considering the aforementioned, our contributions are:
1) Proposal of innovative approaches to enforce SLAs

by pursuing a main Business-Level Objective (BLO):
differentiation of users according of their Affinity/QoS
relationship with the provider.

2) Demonstration of the validity of the model through
fine-grained experiments that demonstrate how a pro-
vider can reach its BLOs without penalizing its pref-
erential users. The results are evaluated in terms of
revenue, client affinity, QoS, and SLA fulfillment.

The experiments have been performed with the Economi-
cally Enhanced Resource Manager (EERM) simulator [6]; a
fine-grained, customizable Cloud market simulator that ap-
plies several Business policies and allows users to define new
custom policies. Both the policies and the simulations are
targeting the infrastructure layer within Cloud Computing
(Infrastructure as a Service, IaaS).

The remainder of this paper is structured as follows. After
the discussion of the related work, Section III describes
the scenario in which Client Classification is applied as
well as the proposed rules for Client Classification: their
motivation and their concrete implementation. Next, Section
IV describes the simulation environment and section V
shows the experimental results that demonstrate de validity
of the rules. At the end, Section VI describes the conclusions
of this paper and states the future research lines.

II. RELATED WORK

This paper extends our previous work in SLA Manage-
ment for maximizing BLOs [7] and Client Classification
Policies for SLA Negotiation and Allocation [8]. First [7]
we introduced policies to maximize the revenue of providers
in Cloud Markets: dynamic pricing, overselling of resources,
dynamic scaling of resources, migration of Virtual Machines
(VMs), etc. Next [8] we modified dynamic pricing and
overselling policies to classify clients in SLA negotiation
and allocation. In Dynamic Pricing, the provider applies
price discounts that are proportional to the affinity of the
clients. In overselling, the provider estimates optimistically
or pessimistically the workload of the client in function of its
affinity or QoS: if there are many preferential clients in the
system, the provider oversells prudentially to decrease the
risk of SLA violation. We demonstrated that these policies
increase the percentage of preferential clients in the system.
This paper introduces new ones that are applied at runtime
for providing high QoS to preferential users.

Aiber et al. [9] introduce an autonomic computing ap-
proach to Business-Oriented self-optimization of Service
Providers. First, a particular scenario is modeled from both
business and IT points of view, and the impact of IT on
Business and vice-versa is studied. Next, business rules
for continuous optimization of IT resources and business
are defined for maximizing the business utility of the IT
resources and maximize the Return of Investment of the
infrastructures. We use a similar approach that differentiates
business and IT layers and uses an EERM between them.

The EERM contains rules for dealing with IT and Business
relationships and maximizing the Business Utility of the
infrastructure.

There is some relevant work in Rule-Based Resource
Management for distributed environments. Collaborative
Awareness Management [10] promotes cooperation between
resources for their optimization by means of a set of rules.
Schiefer et al. [11] introduced a Business Rules Management
System that is able to sense and evaluate events to respond
to changes in a business environment or customer needs. We
extend these approaches by combining High-Level Service
and Business data with the low-level resource information,
enforcing the flow of information between the two layers
for their mutual optimization. Weng et al. [12] propose an
autonomic management system of VMs that relies on poli-
cies. Their system is mainly oriented to guarantee the QoS
of a pool of VMs by dynamically scaling the assignments
of CPUs to each VM. Our paper extends this approach by
adding other reactive actions, such as migration of resources
or cancellation of tasks, and is not just limited to guarantee
QoS but also Business Metrics.

Client Classification is usual in many businesses such as
banking services [13]. These businesses categorize clients in
function of their size, budget, etc. and establish policies that
define clearly the priorities of the clients, their protection
level, their assigned resources, Quality of Service, etc. In
Cloud Computing, Amazon Elastic Computing Cloud (EC2)
provides a set of predefined VM instances [14], each one
with different performance profiles (CPU load, Memory,
etc.), but a fixed Quality of Service: they promise that
their machines have an annual availability of 99.5%. This
approach may be economically suitable for huge resource
providers, but not for smaller providers. With this paradigm,
small providers should overprovide resources for minimizing
risks and provide high availability. We try to channel the
risk to the SLAs with the lowest priority according to
the defined BLOs. In case of SLA violation, the Clients
will receive an economic compensation proportional to the
seriousness of the violation. This paper extends the approach
of Amazon by introducing and evaluating many policies for
Client Classification combined with other features of Cloud
Computing: dynamic elasticity of resources, migration of
VMs across the resources pool, or cancellation of tasks.

Previous papers introduced some policies similar to those
introduced in this paper. Sulistio et al. [15] proposed over-
booking strategies for mitigating the effects of cancellations
and no-shows for increasing the revenue. In addition to that,
we consider the possibility of under-usage of the reserved
resources of the client. Dube et al. [16] establishes different
ranges of prices for the same resource and analyze an
optimization model for a small number of price classes.
Their proposal is similar to our proposal about establishing
Gold, Silver and Bronze ranges and optimizing their QoS
performance giving priority to the contracts that report the

highest economic profit. We extend this work by combining
the QoS ranges with many other policies, such as Pricing
or Selective Violation of SLAs. Another main difference
between this paper and the work from Sulistio et al. and
Dube et al. is that the main BLO of our work is the Client
Classification instead of the Maximization of the Revenue.

Püschel et al. [17] propose a scheme for Client Classifi-
cation by means of price discrimination, different priorities
in job acceptance and differentiation in Quality of Service.
They adopt the architecture of the EERM, which supports
the optimization of SLA Negotiation and Allocation by
dealing with both economic and technical information of
Cloud Markets. We extend the work of Püschel et al. by
adding new policies for SLA Management at runtime, and
deeper validation of them by means of a tailored simulator
of Clients, Cloud Market, EERM and Resource Fabrics.

III. PRELIMINARY DEFINITIONS

A Cloud Market has two main actors: Clients and Pro-
viders. Clients try to buy resources in the Market to host
their services, by sending resource requests to providers
to start a negotiation. Each provider owns a set of N
physical machines. Each physical machine can host several
VMs that execute single tasks, such as Web Services or
Batch Jobs. The QoS terms of a task are described in
SLA = {Rev(vt), C,

−→
S ,∆t}:

• Rev(vt) is a revenue function to quantify how much the
provider earns after finishing correctly or incorrectly a
task. vt is the amount of time in which the provider
has not provided the agreed QoS to the client. Let MP
be the Maximum Penalty, MR the Maximum Revenue,
MPT the Maximum Penalty Threshold, and MRT the
Maximum Revenue Threshold, Equation 1 describes the
revenue function. If vt < MRT the SLA is not violated
(0 violations); if vt > MPT , the SLA is completely
violated (1 violations). MPT > vt > MRT implies a
partial violation (vt−MRT

MPT−MRT violations).

Rev(vt) =
MP −MR

MPT −MRT
(vt−MRT) +MR (1)

This equation allows a grace period where the provider
can violate the SLA without being penalized. When vt
surpasses the MRT threshold, the revenue linearly de-
creases (see Figure 1) in function of vt. The Maximum
Penalty MP is defined for avoiding infinite penalties.
Client and provider can negotiate the values of MRT ,
MR, MPT , MP for establishing different QoS ranges
for the clients, which report different revenues and
penalties for the providers.

• C is the client information. Let id be the client identifier
and
−−→
CD a vector that handles the description of the

client, then C = {id,
−−→
CD}. The information contained

in
−−→
CD must be decided by the System Administrator

and applied consequently in the policies.

Figure 1: Revenue function of an SLA (Equation 1)

•
−→
S describes the QoS of the purchased service: through-
put, response time, and so on.

• ∆t is the time period requested to allocate the task.
The revenue function Rev(vt) subtracts the penalties to

the incomes, so it indicates how profitable is the allocation
and execution of an SLA with a given set of policies.
However, it does not indicate the net benefit of the provider
because it does not consider other costs, such as infrastruc-
ture maintenance.

Current Utility Computing market implementations [18],
[19] provide common components for accounting and billing
the usage of the resources. They also provide an SLA
Enforcement component that continuously checks if the
provider is fulfilling the agreed SLAs. In case an SLA
is violated, the SLA Enforcement component imposes the
appropriate sanctions to the provider (Equation 1).

A. Client Classification criteria
We propose the classification of clients according to the

priority that the provider gives them. This priority can be
described using two different criteria:

Client Affinity: The affinity (aff ⊆ [0, 1]) measures how
the client is related to the provider. For example, aff = 1
for a completely internal user; aff = 0.25 ∼ 0.75 for a
client from a company with privileged relationship with the
provider (e.g. in the same business cluster); aff = 0 for a
completely external client. The calculation of the affinity
may be different among different providers, depending on
their business goals. How affinity is calculated is not im-
portant in this paper: the main topic is how to discriminate
clients in function of their affinity.

Quality of Service: The same Cloud provider could host
critical tasks and tasks that can tolerate low QoS in some
situations. For example, e-commerce applications may need
extra QoS guarantees to avoid losing money on service
failure. It is reasonable to allow critical clients to buy extra
QoS guarantees at higher prices, and keep cheap prices (but
fewer QoS guarantees) for non-critical tasks. The different
ranges of QoS are defined by establishing different values
for MRT , MR, MPT and MP in Rev(vt) (Equation 1).
We define three ranges of QoS, in descending order: Gold,
Silver and Bronze. The higher the QoS range, the higher
MR and the lower MP , MRT and MPT (lower values of
these three values imply higher penalties).

This paper proposes policies that are applied when the
SLAs are managed during service operation. During this

phase, the provider must be able to deal with unexpected
events such as resource overloading or system failures.
The goal is keeping the agreed QoS and minimizing the
violations of SLAs from clients to which the provider has
high affinity.

B. Rules for client classification at runtime SLA enforcement

To facilitate the reading of this paper, the names of
the policies have been abbreviated according to the next
notation: PolicyNameCriterion. PolicyName is an abbre-
viation of the policy name. The abbreviations of all the
policies are shown below, enclosed in parentheses next to
their names. Criterion is an abbreviation of the magnitude
that is used for calculating the priority of the client: the
affinity (Aff) or the Quality of Service (QoS). When
the policies for Client Classification are compared with
policies that prioritize the maximization of the revenue,
the abbreviation for this last priority is RM (Revenue
Maximization). As example, Price Discrimination policies
that apply discount to clients according to their affinity are
notated as SLAV iolAff .

The proposed policies are:
Selective Violation or Cancellation of SLAs (SLAViol

or SLACanc): Overselling [8] increases the violations of
SLAs in the provider side. The Selective SLA Violation se-
lects at every moment the SLAs to be partially violated (i.e.,
during some time) to minimize the violations of other SLAs
from clients with higher priority. In some extreme scenarios,
such as partial failure of the resource fabrics [20], some
selected SLAs could be completely canceled for minimizing
the impact in the BLOs achievement.

Dynamic Scaling of Resources (DynScal): The spare
resources are dynamically assigned to high-priority clients
whose SLA is not being fulfilled.

Runtime Migration of Tasks (RtMigr): When the load
of the resources becomes high, high-priority services are
migrated to other hardware resources with low average
priority of tasks.

IV. SIMULATION ENVIRONMENT

This section describes the experimental environment and
its configuration values. We have used the EERM Simulator
[6] to execute and evaluate the policies that are introduced
in this paper. The EERM Simulator is a fine-grained Cloud
Market simulator, which simulates the complete cycle of a
Cloud Resource sale and execution: services discovery, SLA
negotiation process between provider and client, execution
of web services or batch jobs and monitoring of the re-
sources. It supports many features of Cloud Computing, such
as elasticity of resources or migration of VMs. In addition, it
integrates the Drools [21] Rule Engine to allow configuring
the SLA enforcement policies in function of the BLOs (e.g.
the Client Classification policies described in this paper).
We have used a simulated environment because it allows

Figure 2: Sample pattern of web workload

generating more data with limited resources in short time.
That will allow to evaluate more precisely the models.

The simulated data centers are sized to represent a small-
medium company that wants to externalize part of its re-
sources for quicker amortizing the infrastructure costs, as
stated in Section I. However, our research also focuses big
providers, since the policies are applied at the level of each
individual hardware node. Regarding our approach, the only
difference between big and small providers is that the former
own a higher number of hardware nodes.

The constant values and the parameters of the simulation
described are arbitrary because there are no real market
traces to extract data from. Different real market scenarios
could require different values, but the contribution of this
paper is to show how Client Classification reports benefit
qualitatively, not quantitatively. In other words, the paper
shows how a given policy can improve the Quality of Service
to the preferential clients, but not whether the numeric
values are optimum, because they would vary in function
of the real market status. In our future work, the provider
will automatically adjust its parameters for self-adapting
to changing market environments. The observed trends are
more important than specific values.

In the market, clients try to buy resources
to host their Web services. They send resource
requests that contain {QoS,C,

−→
S ,∆t}, in which

QoS = {Gold, Silver,Bronze}. For the same task
in equal time and load conditions, the maximum price that
the client is willing to pay for Gold QoS is 50% higher
than for Silver QoS and 80% higher than for Bronze QoS.

The Web workload is acquired from a real anonymous
ISP (see Figure 2), and varies in function of the hour of the
day and the day of the week: there are more requests from
Monday to Friday evening than during the late night or the
weekend. However, the proportion of QoS and Affinity of
the clients does not vary in time.

Every provider belongs to a different organization, and
has an affinity higher than 0 to the 25% of the clients in
the market, and equal to 0 to the other 75% of clients.
The affinity of the clients of the same organization than the
provider ranges from 0 (non-inclusive) to 1 (inclusive) with
an uniform distribution. Summarizing, the average affinity
of all the clients is ∼ 0.21 for every provider. Each client
asks for Gold, Silver or Bronze QoS, independently of their

organization. 1/6 of the clients ask for Gold QoS, 2/6 ask
for Silver QoS, and 3/6 ask for Bronze QoS.

When the provider checks the request from the client,
it applies Machine Learning techniques [22] to predict
future workloads and verify whether the offered job can be
executed correctly. A bad prediction might entail a violation
of the SLA. The providers that accept the request return a
revenue function Rev(vt), which specifies the prices and
penalties to pay for the execution of the service. Finally, the
client chooses the provider with the lowest price or best time
schedule for its interests, and sends him a confirmation.

Section III-B explains the different policies that are in-
troduced in this paper and demonstrates its validity through
market simulations. In each subsection, a new policy is in-
troduced and simulated in a scenario in which four different
Cloud providers sell their services in a market during a week.
Each provider has its own characteristics:

1) A provider that executes all the policies introduced so
far. It prioritizes users to which the provider has high
affinity.

2) Same as Provider 1, but prioritizing tasks with high
QoS.

3) Same as Providers 1 and 2 (depending on the classifi-
cation criteria), but excluding the policy that is being
introduced in the corresponding subsection.

4) A provider that executes the same policies as Providers
1 and 2 but without client classification as a main
BLO. Its priority is the maximization of the economic
profit [7]. We do not evaluate its results, but we want
to show the effects of its competition with the other
three providers in the simulations.

It is important to evaluate how the providers behave and
how effective the policies are in different scenarios. For
example, if there are many providers and few clients, the
prices and the load of the system will be low; if there are
too many clients and the providers cannot host all of them,
prices and the system workload will be high. To evaluate the
policies in all the scenarios, all the experiments are repeated
with different offer/demand ratios.

V. RULES DEFINITION AND EVALUATION

A. Selective Violation of SLAs (SLAViol)

Our previous work [8] introduced price discrimination and
overselling policies to increase the percentage of preferential
clients that use the system. However, the provider could
oversell too many resources due to errors when estimating
the workloads and some SLAs will be violated indiscrim-
inately. We propose to violate first the SLAs of clients
with low priority: tasks of the clients to which there is
low priority are paused temporarily (using virtualization
facilities). For each SLAi in a set of M SLAs that are
being executed in the overloaded physical resource, the
next formula is calculated: NR(SLAi) =

∑i−1
j=0Rev(vtj)∗

0

0.2

0.4

0.6

0.8

1

32 40 48 56 64

A
ve

ra
ge

 a
ffi

ni
ty

 o
f v

io
la

tio
ns

clients

No SLAViol
SLAViolAff

Figure 3: Average affinity of violations with SLAV iolAff

P (Cj)+
∑M

j=i+1Rev(vtj)∗P (Cj)+Rev(vti +δ)∗P (Ci),
in which P (Ci) is the value of the affinity or the QoS of the
client Ci and δ is the time during which the SLAi will be
violated. The SLA whose NR(SLAi) value is the maximum
will be violated during δ time. This formula considers both
revenue and client priority for choosing the SLA to be
violated.

As defined in Equation 1, each SLA has a grace period
(vt ≤ MRT) in which violating it will not involve a
penalization. As a consequence, the system will tend to
violate first the SLAs whose vt ≤ MRT , or the SLAs
whose economic penalty is low. This will lead to distribute
the selective violations across the SLAs in grace period
(with some variance due to their client priority) and keep a
compromise between the Client Classification and Revenue
Maximization objectives.

The experiments performed in this section shows only
the results of simulations from 32 to 64 clients, because
the load of the system starts to be high from 32 clients,
and the number of violations will be high enough to be
representative.

The results of the experiments support the validity of
both SLAV iolAff and SLAV iolQoS . Figure 3 compares
the average affinity of the SLA violations of two providers.
The average affinity is the addition of the affinities of all the
violated SLAs divided by the number of SLA violations.
Both apply overselling and price discrimination policies,
but one provider applies SLAV iolAff and the other does
not. The figure shows that the average affinity of violations
decreases ∼30-50% when applying SLAV iolAff because
the provider chooses to violate SLAs from clients to which
there is low affinity. The results of prioritizing by QoS range
are shown in Figures 4 and 5, which show the percentage of
each QoS range from the total of SLA violations in several
market simulations with different number of clients. Figure 4
shows that the higher the QoS rank the higher the percentage
of violated SLAs because high-QoS SLAs are harder to
fulfil. Figure 5 shows that the proportion of high-QoS SLAs
that are violated is considerably reduced with SLAV iolQoS .

A special case of SLAV iol is the Selective Cancellation

Figure 4: % of violations by QoS range without
SLAV iolQoS

Figure 5: % of violations by QoS range with SLAV iolQoS

of SLAs (SLACanc): instead of pausing the lowest-priority
VMs, SLACanc policy cancels them completely. Figures 6
and 7 show the results of an experiment where SLACanc
is applied: both the average affinity of the violations and the
percentage of violations of high-QoS SLAs decreases notice-
ably in providers that respectively apply SLACancAff and
SLACancQoS . However, SLACanc must be applied with
extreme caution because it increases enormously the number
of violations, specially to clients with low affinity (up to
2000% in the experiments). Applying SLACanc would lead
to decreasing the reputation of the provider [23]. SLACanc
must be only applied in special cases, such as reorganizing
tasks after a partial failure of the system, similar to the
Amazon EC2 outage in April 2011 [20].

B. Dynamic Scaling of Resources (DynScal)

DynScal uses the potential of elasticity in virtualization:
hardware resources are transparently reallocated within VMs
at runtime [24]. When an SLA is violated, the EERM
transfers resources from the VMs that are not using all
their assigned resources to the VM whose SLA is violated.
This policy uses the client priority as a factor to decide
which VM the resources are subtracted from: the monitoring
data about the resources usage of VMs from a low-priority
client is artificially decreased by a percentage that is linearly
proportional to the priority, and increased similarly in VMs

0

0.1

0.2

0.3

0.4

0.5

0.6

32 40 48 56 64

A
ve

ra
ge

 a
ffi

ni
ty

 o
f v

io
la

tio
ns

clients

No SLACanc
SLACancAff

Figure 6: Average affinity of violations with SLACancAff

Figure 7: % of violations by QoS range with SLACancQoS

from high-priority clients. In consequence, the system will
act as if low-priority VMs tend to have free resources to
transfer to high-priority VMs. Depending on the BLOs of
each provider, the scale of resources could be proportional
to the priority in a non-linear distribution.

Figure 8 shows that DynScalAff reduces the average
affinity of the violations especially in scenarios in which the
system load is not high. The reason is that there is not much
leeway for finding free resources in high-load scenarios,
even when the monitoring results are deviated to enforce
Client Classification. Figure 9, if compared with Figure 5,
shows that the number of Gold SLAs that are violated is
reduced by 50% when applying DynScalQoS .

0

0.1

0.2

0.3

0.4

0.5

0.6

32 40 48 56 64

A
ve

ra
ge

 V
io

la
tio

ns
 A

ffi
n

ity

clients

No DynScal DynScalAff

Figure 8: Average affinity of violations with DynScalAff

Figure 9: % of violations by QoS range with DynScalQoS

C. Runtime Migration of Tasks (RtMigr)

This policy uses another facility of virtualization: the live
migration of VMs across the resources pool with perfor-
mance penalty near to zero [25]. If the load of a physical
machine exceeds a threshold of 90% of its maximum ca-
pacity, the RtMigr policy is triggered: the system tries to
find another physical machine in the pool where the average
priority of its running tasks is lower than the machine that
triggered RtMigr and, if found, it looks in the overloaded
machine for the task with the highest client priority and
migrates it to the target machine.
RtMigr policy combines well with SLAV iol. Even if

the migration of a task could simply translate the violation
to the target machine, the key fact is that RtMigr diversifies
the priorities of the tasks in every physical machine. In
consequence, it is easy to find low-priority SLAs in every
overloaded machine. Otherwise, if RtMigr was not applied
there would be physical machines that only execute high-
priority tasks and the EERM would violate one of them
even if there were low-priority SLAs in the other resources.

The concrete value for the threshold (90% in the exper-
iments) is not important in this work, because we want
to show that applying RtMigr decreases the violations
of high-priority SLAs. Finding the optimum value for this
threshold is part of our future work.

The effects of RtMigr vary when applying RtMigrAff

or RtMigrQoS . The average affinity of the violations is only
reduced about 3-5% in average in all the scenarios (so the
figure that shows it has not been considered interesting). The
cause is that the more policies implemented in the provider
the less percentage of improvement (which tends to a limit)
is obtained by adding new ones. On the other hand, Figure 10
shows the effects of live migration when prioritizing high-
QoS tasks: the violations of Gold tasks are nearly 0, and
Silver violations are reduced. Figure 10 also shows that the
more clients, the lesser effects of runtime migration. The
reason is that migrated tasks would be also violated in the
target machines because the high load of the resources.

Another advantage of RtMigr is the reduction of the
number of violations. Figure 11 shows that the violations

Figure 10: % of violations by QoS range with RtMigrQoS

10

15

20

25

30

35

40

45

50

55

60

32 40 48 56 64

%
 o

f r
ed

uc
tio

n
of

 S
LA

 v
io

la
tio

ns
clients

RtMigrAff

RtMigrQoS

Figure 11: % of reduction of violations with RtMigr

are reduced almost linearly with the number of clients when
using RtMigrAff . That does not mean that the total of
violations is lower with 64 clients than with 32 clients,
because although the percentage of reduction is high, the
total number of violations is also higher.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a set of policies for managing SLAs
during service operation in a Cloud provider, classifying
the clients according to two facets: client affinity and QoS.
These policies have been evaluated through experiments
that show how each policy can improve the prioritization
of clients when combined by the other policies. After the
application of all the policies, the EERM increases the
number of high-priority clients (high-affinity or Gold and
Silver, depending on the chosen type of priority), and keeps
a good compromise of quality with them by violating a low
percentage of high-priority SLAs. Some of the policies also
reduce the number of violations.

We conclude that Client Classification policies in SLA
enforcement achieve their objectives: the percentage of vio-
lated SLAs is lower for users to which there is high priority.
Classification by QoS is suitable for a pure Cloud provider
whose business is only based on selling its resources (it does
not use them for its internal applications). Classification by
affinity is more suitable for organizations that mix internal
and external applications on their resources.

The policies presented in this paper rely on some constant
values that may not lead to the optimum achievement of
the BLOs, which is not the main objective in this paper.
Our aim is to show how the policies decrement both the
number of SLA violations and the priority of the clients
that the SLAs belong to. Finding the optimum values of the
aforementioned constants brings a research opportunity for
future work: adding dynamism to rules for allowing them to
self-adapt at runtime to the changes in the environment and
achieve the optimum results according to their own BLOs.

In future work lines, we will investigate the validity of the
rules in greater detail, by executing the tests in real platforms
for checking how runtime migrations or dynamic scaling of
resources behave in current virtualization systems.

ACKNOWLEDGEMENTS

This work is supported by the Ministry of Science and
Technology of Spain and the European Union (FEDER
funds) under contract TIN2007-60625, by the Generalitat
de Catalunya under contract 2009-SGR-980, and by the Eu-
ropean Commission under FP7-ICT-2009-5 contract 257115
(OPTIMIS).

REFERENCES

[1] M. A. Rappa, “The utility business model and the future of
computing services,” IBM Syst. J., vol. 43, no. 1, pp. 32–42,
2004.

[2] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented
cloud computing: Vision, hype, and reality for delivering it
services as computing utilities,” in 10th IEEE Intl. Conf. on
High Performance Computing and Communications (HPCC
2008). Dalian, China: IEEE Computer Society, September
2008, pp. 5–13.

[3] I. Foster, “The anatomy of the grid: Enabling scalable vir-
tual organizations,” Cluster Computing and the Grid, IEEE
International Symposium on, vol. 0, p. 6, 2001.

[4] M. E. Porter, “Clusters and the new economics of competi-
tion,” Harvard Business Review, vol. 76, no. 6, pp. 77–90,
Nov-Dec 1998.

[5] Spotify. [Online]. Available: http://www.spotify.com
[6] Economically Enhanced Resource Manager (last visit: Aug.

2011). [Online]. Available: http://www.sf.net/projects/eerm
[7] M. Macias, O. Fito, and J. Guitart, “Rule-based SLA manage-

ment for revenue maximisation in cloud computing markets,”
in 2010 Intl. Conf. of Network and Service Management
(CNSM’10), Niagara Falls, Canada, October 2010, pp. 354–
357.

[8] M. Macias and J. Guitart, “Client classification policies for
SLA negotiation and allocation in shared cloud datacenters,”
in To be published in Proceedings of the 8th International
Workshop on the Economics and Business of Grids, Clouds,
Systems, and services (GECON 2011), December 2011.

[9] S. Aiber, D. Gilat, A. Landau, and A. Sela, “Autonomic
self-optimization according to business objectives,” in Pro-
ceedings of the First International Conference on Autonomic
Computing. Washington, DC, USA: IEEE Computer Society,
2004, pp. 206–213.

[10] P. Herrero, J. L. Bosque, M. Salvadores, and M. S. Perez,
“A rule based resources management for collaborative grid
environments,” Int. J. Internet Protoc. Technol., vol. 3, no. 1,
pp. 35–45, 2008.

[11] J. Schiefer, S. Rozsnyai, C. Rauscher, and G. Saurer, “Event-
driven rules for sensing and responding to business situa-
tions,” in Inaugural International Conference on Distributed
Event-Based Systems (DEBS 07). Toronto, Ontario, Canada:
ACM, 2007, pp. 198–205.

[12] D. Weng and M. Bauer, “Using policies to drive autonomic
management of virtual systems,” in 2010 Intl. Conf. of Net-
work and Service Management (CNSM’10), Niagara Falls,
Canada, Oct. 2010, pp. 258–261.

[13] Client classification and reclassification policy of rabobank
polska sa (last visit: Feb. 2011). [Online]. Available:
http://goo.gl/AKu86

[14] Amazon EC2 instances (last visit: Feb. 2011). [Online].
Available: http://aws.amazon.com/ec2/instance-types/

[15] A. Sulistio, K. H. Kim, and R. Buyya, “Managing can-
cellations and no-shows of reservations with overbooking
to increase resource revenue,” in Intl. Symp. on Cluster
Computing and the Grid (CCGRID 2008). Lyon, France:
IEEE Computer Society, May 2008, pp. 267–276.

[16] P. Dube, Y. Hayel, and L. Wynter, “Yield management for
IT resources on demand: analysis and validation of a new
paradigm for managing computing centres,” Journal of Rev-
enue and Pricing Management, vol. 4:1, pp. 24–38, 2005.

[17] T. Püschel, N. Borissov, M. Macias, D. Neumann, J. Guitart,
and J. Torres, “Economically enhanced resource management
for internet service utilities.” in WISE, ser. Lecture Notes in
Computer Science, vol. 4831. Springer, 2007, pp. 335–348.

[18] Catnets. [Online]. Available: http://www.catnets.uni-
bayreuth.de

[19] D. Neumann, J. Stoesser, A. Anandasivam, and N. Borissov,
“SORMA - building an open grid market for grid resource al-
location,” in 4th international conference on Grid economics
and business models (GECON’07). Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 194–200.

[20] R. Tehrani, “Amazon EC2 outage: what the experts tell us,”
Customer Interaction Solutions, vol. 29, no. 12, p. 1, May
2011.

[21] “Drools rule engine.” [Online]. Available:
http://www.jboss.org/drools

[22] G. Reig, J. Alonso, and J. Guitart, “Prediction of job resource
requirements for deadline schedulers to manage high-level
SLAs on the cloud,” in 9th IEEE Intl. Symp. on Network
Computing and Applications, Cambridge, MA, USA, July
2010, pp. 162–167.

[23] M. Macias and J. Guitart, “Influence of reputation in revenue
of grid service providers,” in 2nd International Workshop
on High Performance Grid Middleware (HiPerGRID’08),
Bucharest, Romania, Nov. 2008.

[24] I. Goiri, F. Julia, J. Ejarque, M. de Palol, R. Badia, J. Guitart,
and J. Torres, “Introducing virtual execution environments for
application lifecycle management and SLA-driven resource
distribution within service providers,” in 8th IEEE Intl. Sym-
posium on Network Computing and Applications (NCA’09),
Cambridge, MA, USA, July 2009, pp. 211–218.

[25] I. Goiri, F. Julia, and J. Guitart, “Efficient data management
support for virtualized service providers,” in 17th Euromicro
Conf. on Parallel, Distributed and Network-based Processing
(PDP’09), Weimar, Germany, February 2009, pp. 409–413.

