Summoning the Go Memory Manager

Mario Macías, Ph.D.

Barcelona Golang Meetup. Jan 31st, 2019

twitter.com/MaciasUPC           github.com/mariomac

Who am I?

Senior Software Engineer at New Relic (2017-)

Part-time associate lecturer at Universitat Politècnica de Catalunya (2009-)

Before:

 |       |Game|                                        |Mido|  New 
 | iSOCO |loft|    Barcelona Supercomputing Center     |kura| Relic 
 |---+---+---+---+---+---+---|---+---+---+---+---+---+---+---+---*-
2003    2005                2010                2015            2019

Our scenario: Donuts quality scoring

package donut

type Donut struct {              type Preferences struct {
    Radius     float32               Radius     float32      
    Thick      float32               Thick      float32    
    Toppings   []string              Toppings   map[string]float32      
    GlutenFree bool                  GlutenFree float32              
    Hole       bool                  Hole       float32
    Filling    string                Filling    map[string]float32
}                                 }

Our scenario: Donuts quality scoring

+-------------+         +-------------+
|   d:Donut   +-------->+             |
+-------------+         |             |       +-----+
                        | Score(d, p) +------>+score|
+-------------+         |             |       +-----+
|p:Preferences+-------->+             |
+-------------+         +-------------+

Our monopolistic Cloud service needs to monitor all the Donuts in the Earth!
Performance is critical

Designing our functions

func Generate() *Donut { }
func Score(d *Donut, p *Preferences) float32 { }

... or ...

func Generate() Donut { }
func Score(d Donut, p Preferences) float32 { }

... ?

Remembering good old C-lessons

When passing arguments or returning values, pointers are faster than big structs

reflect.TypeOf, Go 1.11.5 for Darwin x86_64

Value Pointer
Donut 56 bytes 8 bytes
Preferences 32 bytes 8 bytes

Checking that our previous knowledge is true

func BenchmarkValue(b *testing.B) {
	preferences := RndPreferences()
	for i := 0; i < b.N; i++ {
		_ = ScoreVal(GenerateRndVal(), preferences)
	}
}
func BenchmarkPointers(b *testing.B) {
	preferences := RndPreferences()
	for i := 0; i < b.N; i++ {
		_ = ScorePtr(GenerateRndPtr(), &preferences)
	}
}

Benchmark Results

go test ./donut/. -bench=Benchmark -benchmem

BenchmarkValue-4     5000000     262 ns/op    15 B/op   0 allocs/op
BenchmarkPointers-4  5000000     332 ns/op    79 B/op   1 allocs/op

Our code (including random number generation and scoring operations) using values is ~23% faster than using pointers!

Digging into the results

  1. Adding -cpuprofile profile.out to the go test command.
  2. Running go tool trace benchmarks.out

Traces using pointers

Trace with pointers

  • Heap is filled every ~20 ms
  • Garbage Collection usually takes ~240 ns

Traces using values

Trace with pointers

  • Heap is filled every ~60ms
  • Garbage Collection usually takes ~240 ns

Digging more into the results

  1. Adding -cpuprofile cpu.prof -memprofile mem.prof to the go test command.
  2. Running go tool pprof

Flame graph for value-based benchmark

go tool pprof cpu.prof

Flame graph for pointer-based benchmark

go tool pprof cpu.prof

top Memory generation for both benchmarks

go tool pprof mem.prof

(pprof) top
Showing nodes accounting for 568.03MB, 100% of 568.03MB total
      flat  flat%   sum%        cum   cum%
  479.03MB 84.33% 84.33%   479.03MB 84.33%  github.com/mariomac/gomem/donut.GenerateRndPtr
      89MB 15.67%   100%       89MB 15.67%  github.com/mariomac/gomem/donut.GenerateRndVal
         0     0%   100%   479.03MB 84.33%  github.com/mariomac/gomem/donut.BenchmarkPointers
         0     0%   100%       89MB 15.67%  github.com/mariomac/gomem/donut.BenchmarkValue
         0     0%   100%   568.03MB   100%  testing.(*B).launch
         0     0%   100%   568.03MB   100%  testing.(*B).runN

But GenerateRndPtr and GenerateRndVal generate the same amount of information!

Compile-time escape analysis

Priority #1: try to allocate new objects in the stack

Compile-time escape analysis

Priority #1: try to allocate new objects in the stack

#2: allocate in the heap the values that "escape" the stack

What do "to escape" means?

                                    
func a() *Obj {
  r := Obj{}                     
  // ... do something        
  return &r;                     
}                            
func b() {                       
  o := a()
  // ... do something
}

What do "to escape" means?

                                    Stack
func a() *Obj {
  r := Obj{}                     +----------+
  // ... do something        b() |  o:*Obj  |
  return &r;                     +----------+
}                            
func b() {                       
  o := a()
  // ... do something
}

What do "to escape" means?

                                    Stack
func a() *Obj {
  r := Obj{}                     +----------+
  // ... do something        b() |  o:*Obj  |
  return &r;                     +----------+
}                            a() |  r:Obj   |
func b() {                       +----------+
  o := a()
  // ... do something
}

What do "to escape" means?

                                    Stack
func a() *Obj {
  r := Obj{}                     +----------+
  // ... do something        b() |  o:*Obj -----+
  return &r;                     +----------|   |
}                            a() |  r:Obj <-----+
func b() {                       +----------+
  o := a()
  // ... do something
}

What do "to escape" means?

                                    Stack
func a() *Obj {
  r := Obj{}                     +----------+
  // ... do something        b() |  o:*Obj -----+
  return &r;                     +----------+   |
}                                         <-----+
func b() {                       
  o := a()
  // ... do something
}

Unsafe memory access!!

Object creation is escaped to the heap

                                    Stack             Heap
func a() *Obj {
  r := Obj{}                     +----------+        +----------+
  // ... do something        b() |  o:*Obj ------------> r:Obj  |
  return &r;                     +----------+        +----------+
}                            
func b() {                       
  o := a()
  // ... do something
}

Getting insights from the go compiler

  • Add -gcflags="-m" to the go build, go test or go run commands.
 5: func a() *Obj {           | ./dummy.go:5:6: can inline a
 6:   r := Obj{}              | ./dummy.go:10:8: inlining call to a
 7:   return &r               | ./dummy.go:7:9: &r escapes to heap
 8: }                         | ./dummy.go:6:2: moved to heap: r
 9: func b() {                | ./dummy.go:11:13: o escapes to heap
10:   o := a()                | ./dummy.go:10:8: &r escapes to heap
11:   fmt.Printf("%#v\n", o)  | ./dummy.go:10:8: moved to heap: r
12: }                         | ./dummy.go:11:12: b ... argument
13: func main() {             |                   does not escape
14:   b()
15: }

Getting insights from the go compiler

  • Using -gcflags="-m" to improve the efficiency of our code.
 5: func a() Obj {            | ./dumm2.go:5:6: can inline a 
 6:   r := Obj{}              | ./dumm2.go:12:8: inlining call to a
 7:   return r                | ./dumm2.go:11:13: o escapes to heap
 8: }                         | ./dumm2.go:11:12: b ... argument
 9: func b() {                |                   does not escape
10:   o := a()
11:   fmt.Printf("%#v\n", o)
12: }
13: func main() {
14:   b()
15: }

Compile-time escape analysis

Priority #1: try to allocate new objects in the stack

#2: allocate in the heap the values that "escape" the stack

  • Even if they don't actually escape, they will be allocated in the heap if the compiler is not 100% sure

Conclusions

#1: putting some light on a common misconception for memory-managed languages

"Moving pointers is faster than moving structs"

#1: putting some light on a common misconception for memory-managed languages

"Moving pointers is faster than moving structs"

Yes, but... t(heap_alloc) >> t(cache_line_copy)

#2: Don't try premature optimizations

  • Readability first
  • Compiler optimizations may disable your "optimizations"
  • Internal implementation details may disable compiler optimizations: log.Debug(value)

#3: walktrhough by some nice Go performance tools

  • -benchmem to also benchmark memory generation
  • -cpuprofile (and -memprofile) to trace garbage collection (amongst others)
  • pprof to see which parts of the code are the most time/memory consuming
  • -gcflags="-m" to get insights about compiler optimization decisions

Future work

  • Values travelling depth in the call stack
    • Recursive functions
  • Cost of Stack growth vs big heaps
  • Using values vs pointers as receivers

Thank you for your attention!

Mario Macías, Ph.D.

Barcelona Golang Meetup. Jan 31st, 2019

twitter.com/MaciasUPC           github.com/mariomac

Page 1 of 34