Oo.(illlum+
aeBPF Day

Curveballs - learnings from instrumenting
managed runtime applications with eBPF

C>o'ClIlum+
@«QBPF Day

EUROPE
19 March 2024 | Paris, France

Nikola Grcevski

Software Engineer
15 Grafana Labs

Mario Macias
Software Engineer
15 Grafana Labs

Contents c>o'ClIlum +
eBPF Day

EUROPE
e Usual ways we instrument ELF binaries with eBPF

e Managed runtime language pose unique challenges in instrumentation
o Managed memory and garbage collection
o Threading models
o Different linkage conventions
e Ways we can overcome some of the challenges
o Intermediate level: Go

o Death-march: Java

How do we instrument applications?

Auto-instrumentation with eBPF - Grafana Beyla

Web
application Metrics and traces

Runtime/Librarie

Instrumenting binaries geg Cilium +
eBPF Day

EUROPE

e Uprobes/Uretprobes and USDTs (user statically defined
tracepoints)
o Know when a function call starts/ends
o (Get parameters information
e USDTs are very nice, but they are typically uncommon
o OpendDK makes extensive use of of USDTs, but they are
not built with by default ==

Libssl3 read example g88 Cilium +
eBPF Day

SEC ("uprobe/libssl.so:SSL read")

EUROPE
int BPF UPROBE (uprobe ssl read, void *ssl, const void #*buf, int num) {
u64 id = bpf get current pid tgid();
// stash the pointer to the buffer and num bytes
ssl args t args = { .buf = buf, .num = num }; Arguments are available on
bpf map update elem(tactive ssl read args, &id, &args, BPF ANY); function enter. We must
return 0; preserve them, because we only
} get the function return value on
exit.
SEC ("uretprobe/libssl.so:SSL_read")
int BPF URETPROBE (uretprobe ssl read, int ret) ({
u64 id = bpf get current pid tgid();
if (ret < 0) return 0; At this point we’ve read the SSL
ssl args t *args = bpf map lookup elem(&active ssl read args, &id); buffer, we can do something
if (args) handle ssl buf(id, args, ret); \ with it. We fetch the saved

bpf map delete elem(&active ssl read args, &id); function arguments to get *buf

return 0; and num.

Assumptions

SEC ("uprobe/libssl.so:SSL read")

int BPF UPROBE (uprobe ssl read, void *ssl, const void #*buf, int num) {
u64 id = bpf get current pid tgid();
// stash the pointer to the buffer and num bytes
ssl args t args = { .buf = buf, .num = num };
bpf map update elem(&active ssl read args, &id, &args, BPF ANY);

return O;

SEC("uretprobe/libssl.so:SSL_read")

int BPF URETPROBE (uretprobe ssl read, int ret) {

u64 id = bpf get current pid tgid(); <

if (ret < 0) return 0;

ssl args t *args = bpf map lookup elem(&active ssl read args,

if (args) handle ssl buf(id, args, ret);

&id) ;

bpf map delete elem(&active ssl read args, &id);

return 0;

—

C>C>'Clllum+
eBPF Day

EUROPE

We use the PID:TID pair as a map key,
we assume the application doesn’t
overlay virtual threads on top of
system threads.

We assume the address of *buf
doesn’t change.

These are valid
assumptions for libssl,
it’s an unmanaged
library written in C.

Instrumenting binaries g88 Cilium +

eBPF Day

EUROPE

e Uprobes and Uretprobes work almost always

O

Special care needs to be taken to ensure function arguments
and memory offsets haven’t changed
No “Compile Once-Run Everywhere (CO-RE)” for uprobes

Binaries without symbols are hard to deal with

C>C>OC|I|um+

Changing Offsets €eBPF Day
EUROPE
foolib.h v1.3.1 foolib.h v1.4.0
struct flow_metrics { struct flow_metrics {
u32 packets; Offset: 0 u32 packets;| offset:0
u64 bytes; Offset: 4 ue4 bytes; Offset: 4
u8 errno; Offset: 12 ul6 flags; Offset: 12
} ug8 errno; Offset: 14

Managed runtimes g88 Cilium +
eBPF Day

EUROPE

Garbage Collection
o There are many different kinds of garbage collectors

o We mostly care about what they do with our pointer references

Managed stacks

o Can stacks grow, shrink or move?

Managed threads

o Does the managed runtime have virtual threads (or goroutines, green threads, etc.)?

What linkage (or calling convention) does the program use?

Intermediate level: Go

e Garbage Collection
o Concurrent mark and sweep, non-compacting, non-generational
o You can’t get microsecond latency if you copy memory around

o Heap memory references don’'t move)
At program start

Free memory GC area

After running for a little bit (GC performs marking concurrently)

GC finishes a full cycle of mark and sweep

I

C>C>'Clllum+
eBPF Day

EUROPE

Go issue: managed stacks g8e Cilium +
eBPF Day

EUROPE
e Stacks can grow and move (if there isn’t enough room)

e Uretprobes often don’t work =3
e Solution: use uprobes always
o Uretprobes can be implemented with uprobes on the return
instructions
o Requires disassembly and scanning the function code for the

platform return opcode

Go issue: managed threads g88 Cilium +
eBPF Day

EUROPE
e Many goroutines dynamically map to an underlying (smaller)

pool of system threads
e Solution: get goroutine pointer
o The current goroutine is always in a well defined register (Go
1.17+)

o We can use this value as a key instead of the PID:TID pair

Go issue: linkage/calling "Cég%rpsay

conventions EUROPE

e G0 1.16 — 1.17 changed the function calling conventions
o Breaking changes!
e Go 1.17+ uses register calling convention, but it's not the same as the System V ABI
e eBPF probes are sensible to linker options
e \Workarounds
o Adapt our argument register macros to match the Go linkage
m Go version can be discovered from the binary
o Maintain your own database of offsets
m Homebrewed CO-RE

Go example

SEC("uprobe/server_handleStream")

int uprobe server handleStream(struct pt regs *ctx)
voild *goroutine addr = GOROUTINE PTR (ctx);

void *stream ptr = GO PARAMA4 (ctx);

grpc_srv_func invocation t invocation

.start monotime ns = bpf ktime get ns(),

.stream = (u64)stream ptr
i

bpf map update elem(&ongoing grpc_ server requests,
&goroutine addr, é&invocation,

return 0;

}

SEC ("uprobe/server handleStream")

int uprobe server handleStream return(struct pt regs *ctx)
void *goroutine addr = GOROUTINE PTR(ctx);

grpc_srv_func_invocation_ t *invocation

bpf map lookup elem(&ongoing grpc_server requests,

if (invocation) {
// Do something
}

bpf map delete elem(&ongoing grpc_ server requests,

return 0;

BPF_ANY));

geeCilium +
@
eBPF Day

EUROPE

We use the goroutine address as a
map key, instead of the PID:TID
pair.

We save the 4th function

&goroutine addr);

parameter, stream, by using a Go
specific macro to map the 4th
argument register in the Go calling

convention.
&goroutine addr);

Go corner cases... C>.0<:|||um+
eBPF Day

EUROPE
e (Go heap memory references don’'t move, but the stacks move (=

e Go’s compiler performs escape analysis on pointers:
o Itlooks to prove that a pointer doesn’t “escape” beyond the scope
of the function call
o Ifit doesn’t escape, the struct will be allocated on the stack and the
pointer will be a stack pointer
e Instrumentation targets need to be inspected to ensure that the pointer

values are safe to be tracked

Death-march: Java OO’CIlIum +
eBPF Day

EUROPE
e Different virtual machines

o OpendDK, GraalVM, J9, Azul Zing
o Discussion will be limited to OpenJDK
e Garbage Collection
o Java has number of different garbage collectors
o All of them move object references, even the mark and sweep collector does
“occasional” compaction

o We can’t remember object references in BPF maps =

Death-march: Java

e Garbage Collection
o All are compacting and moving memory

o Even the simplest collector moves memory
At program start

Free memory GC area

After running for a little bit (GC performs marking concurrently)

GC finishes a full cycle of mark and sweep

GC does compaction

C>C>'Clllum+
eBPF Day

EUROPE

Death-march: Java OO’CIlIum +
eBPF Day

EUROPE
e Managed stacks

o Stacks are stored on the heap when virtual threads are used and heap references
move
o Uretprobes can’t work =
e Managed threads
o Yes, if virtual threads are used
o There’s a dedicated current thread register, so it's easy to find a key
e What linkage (or calling convention) does the program use?

o Uses register calling convention, but it's not the same as the System V ABI

Solutions for Java Oo'Clllum +
eBPF Day

EUROPE
Solutions are somewhat similar to the solutions for Go:

e Use uprobes only, use the dedicated VM Thread register to find a key for BPF maps

e Don’t remember references, assume everything will move

e |f you need to read data from the Java heap, read on method enter unless the method
returns a reference

e Instrument more than one method to read something like a received buffer

e \We can adapt our argument register macros to match the Java linkage

So we said use uprobes? gee Cilium +
eBPF Day

EUROPE
e We can only instrument JIT compiled methods

o Java programs start interpreted, most useful methods get compiled
e JIT compiled methods are difficult to deal with:

o They are generated on the fly, there are no binary files to inspect

o The JVM will regularly recompile methods, probes must be dynamically inserted as
compile events happen

o Inlining is unstable and driven by runtime profiling

m Multiple symbols need to be instrumented sometimes to overcome this challenge

o The runtime patches the code, disassembly might not always work for attaching

probes on ‘return’ on some platforms (e.g. x86)

How do we find Java symbols? g8&Cilium+
eBPF Day

EUROPE
e \We need to keep monitoring the compiled methods

o Attach a uprobe to libjvm.so on register_nmethod
o Alternatively, we can attach a Java agent to get us the compilation events
e If the executable is GraalVM native compiled binary, this is just like any other binary
o E.g:Java_java_util_zip_Inflater_inflateBytesBytes
e If we started after java, we need to get a list of all existing compiled methods
o Without JVM options this requires running jemd or similar programs which attach to
the JVM.
o If we can control the launch of the java program, we can get a compilation method log
m -XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation
(e.g. with JDK_JAVA OPTIONS/JAVA TOOL_OPTIONS)

Impossible: Interpreters and

Trace Compilers

Interpreters interpret code
o There’s are no function/method symbols to attach a probe to
Partially compiled methods
o Once called, neverending methods/functions
Trace JIT compilers (e.g. LuaJIT)
o No method/function compilation boundaries
o Only traces of hot-paths
We can still attach to any native statically compiled libraries the runtime uses

o E.g: Python makes extensive use of native libraries

c>o'ClIlum+

eBPF Day

EUROPE

What we’ve implemented so far g Cilium +
eBPF Day

EUROPE
e \We have released full support for Go program instrumentation

e \We work on OpenTelemetry observability
o Java, .NET are well supported with OpenTelemetry auto-instrumentation
o Our primary interest in Java, .NET and others is related to instrumenting native
compiled binaries, e.g. GraalVM Native Image, .NET Native AOT...
e We'll be adding support for more user-level instrumentation for more managed runtimes
e eBPF is also great for getting runtime metrics from the managed runtime

o We can use uprobes to find: GC times, number of goroutines in flight, event loop lag...

Summary gee Cilium +
eBPF Day

EUROPE
e We can instrument programs build on top of managed runtimes by

using eBPF

e Some managed runtime programs are easier to instrument than
others

e Some managed runtime programs are impossible to instrument

e Typical approaches for instrumenting statically compiled programs

must be adjusted to match the runtime environment reality

Connect with us C>.°<:|||um +
eBPF Day

EUROPE
e You can find us on the CNCF Slack

e We are also on the Cilium & eBPF Slack
e #ebpf on the Grafana Labs Community Slack

Thank you!

Connect with us at
https://aithub.com/grafana/beyla

https://github.com/grafana/beyla

