

Nikola Grcevski
Software Engineer

Grafana Labs

Photo

Mario Macias
Software Engineer

Grafana Labs

Curveballs - learnings from instrumenting
managed runtime applications with eBPF

19 March 2024 | Paris, France

Contents
● Usual ways we instrument ELF binaries with eBPF

● Managed runtime language pose unique challenges in instrumentation

○ Managed memory and garbage collection

○ Threading models

○ Different linkage conventions

● Ways we can overcome some of the challenges

○ Intermediate level: Go

○ Death-march: Java

Linux

How do we instrument applications?

Web
application Metrics and traces

Auto-instrumentation with eBPF - Grafana Beyla

Grafana
BeylaeB

PF

Runtime/Libraries

Instrumenting binaries

● Uprobes/Uretprobes and USDTs (user statically defined

tracepoints)

○ Know when a function call starts/ends

○ Get parameters information

● USDTs are very nice, but they are typically uncommon

○ OpenJDK makes extensive use of of USDTs, but they are

not built with by default 😞

SEC("uprobe/libssl.so:SSL_read")

int BPF_UPROBE(uprobe_ssl_read, void *ssl, const void *buf, int num) {

 u64 id = bpf_get_current_pid_tgid();

 // stash the pointer to the buffer and num bytes

 ssl_args_t args = { .buf = buf, .num = num };

 bpf_map_update_elem(&active_ssl_read_args, &id, &args, BPF_ANY);

 return 0;

}

SEC("uretprobe/libssl.so:SSL_read")

int BPF_URETPROBE(uretprobe_ssl_read, int ret) {

 u64 id = bpf_get_current_pid_tgid();

 if (ret < 0) return 0;

 ssl_args_t *args = bpf_map_lookup_elem(&active_ssl_read_args, &id);

 if (args) handle_ssl_buf(id, args, ret);

 bpf_map_delete_elem(&active_ssl_read_args, &id);

 return 0;

}

Libssl3 read example

Arguments are available on
function enter. We must
preserve them, because we only
get the function return value on
exit.

At this point we’ve read the SSL
buffer, we can do something
with it. We fetch the saved
function arguments to get *buf
and num.

Assumptions
SEC("uprobe/libssl.so:SSL_read")

int BPF_UPROBE(uprobe_ssl_read, void *ssl, const void *buf, int num) {

 u64 id = bpf_get_current_pid_tgid();

 // stash the pointer to the buffer and num bytes

 ssl_args_t args = { .buf = buf, .num = num };

 bpf_map_update_elem(&active_ssl_read_args, &id, &args, BPF_ANY);

 return 0;

}

SEC("uretprobe/libssl.so:SSL_read")

int BPF_URETPROBE(uretprobe_ssl_read, int ret) {

 u64 id = bpf_get_current_pid_tgid();

 if (ret < 0) return 0;

 ssl_args_t *args = bpf_map_lookup_elem(&active_ssl_read_args, &id);

 if (args) handle_ssl_buf(id, args, ret);

 bpf_map_delete_elem(&active_ssl_read_args, &id);

 return 0;

}

We use the PID:TID pair as a map key,
we assume the application doesn’t
overlay virtual threads on top of
system threads.

We assume the address of *buf
doesn’t change.

These are valid
assumptions for libssl,
it’s an unmanaged
library written in C.

Instrumenting binaries

● Uprobes and Uretprobes work almost always

○ Special care needs to be taken to ensure function arguments

and memory offsets haven’t changed

○ No “Compile Once-Run Everywhere (CO-RE)” for uprobes

○ Binaries without symbols are hard to deal with

Changing Offsets

foolib.h v1.3.1

struct flow_metrics {
 u32 packets;
 u64 bytes;
 u8 errno;
}

foolib.h v1.4.0

struct flow_metrics {
 u32 packets;
 u64 bytes;
 u16 flags;
 u8 errno;
}

Offset: 0

Offset: 4

Offset: 12

Offset: 0

Offset: 4

Offset: 12

Offset: 14

Managed runtimes
● Garbage Collection

○ There are many different kinds of garbage collectors

○ We mostly care about what they do with our pointer references

● Managed stacks

○ Can stacks grow, shrink or move?

● Managed threads

○ Does the managed runtime have virtual threads (or goroutines, green threads, etc.)?

● What linkage (or calling convention) does the program use?

Intermediate level: Go
● Garbage Collection

○ Concurrent mark and sweep, non-compacting, non-generational

○ You can’t get microsecond latency if you copy memory around

○ Heap memory references don’t move 👌

Free memory GC area

Allocated memory (some is garbage)

At program start

After running for a little bit (GC performs marking concurrently)

GC finishes a full cycle of mark and sweep

live live

Go issue: managed stacks

● Stacks can grow and move (if there isn’t enough room)

● Uretprobes often don’t work 😒
● Solution: use uprobes always

○ Uretprobes can be implemented with uprobes on the return

instructions

○ Requires disassembly and scanning the function code for the

platform return opcode

Go issue: managed threads

● Many goroutines dynamically map to an underlying (smaller)

pool of system threads

● Solution: get goroutine pointer

○ The current goroutine is always in a well defined register (Go

1.17+)

○ We can use this value as a key instead of the PID:TID pair

Go issue: linkage/calling
conventions
● Go 1.16 → 1.17 changed the function calling conventions

○ Breaking changes!

● Go 1.17+ uses register calling convention, but it’s not the same as the System V ABI

● eBPF probes are sensible to linker options

● Workarounds

○ Adapt our argument register macros to match the Go linkage

■ Go version can be discovered from the binary

○ Maintain your own database of offsets

■ Homebrewed CO-RE

Go example
SEC("uprobe/server_handleStream")
int uprobe_server_handleStream(struct pt_regs *ctx) {
 void *goroutine_addr = GOROUTINE_PTR(ctx);
 void *stream_ptr = GO_PARAM4(ctx);
 grpc_srv_func_invocation_t invocation = {
 .start_monotime_ns = bpf_ktime_get_ns(),
 .stream = (u64)stream_ptr
 };
 bpf_map_update_elem(&ongoing_grpc_server_requests,
 &goroutine_addr, &invocation, BPF_ANY));
 return 0;
}
SEC("uprobe/server_handleStream")
int uprobe_server_handleStream_return(struct pt_regs *ctx) {
 void *goroutine_addr = GOROUTINE_PTR(ctx);
 grpc_srv_func_invocation_t *invocation =
 bpf_map_lookup_elem(&ongoing_grpc_server_requests, &goroutine_addr);
 if (invocation) {
 // Do something
 }
 bpf_map_delete_elem(&ongoing_grpc_server_requests, &goroutine_addr);
 return 0;
}

We use the goroutine address as a
map key, instead of the PID:TID
pair.

We save the 4th function
parameter, stream, by using a Go
specific macro to map the 4th
argument register in the Go calling
convention.

Go corner cases…

● Go heap memory references don’t move, but the stacks move 😦
● Go’s compiler performs escape analysis on pointers:

○ It looks to prove that a pointer doesn’t “escape” beyond the scope

of the function call

○ If it doesn’t escape, the struct will be allocated on the stack and the

pointer will be a stack pointer

● Instrumentation targets need to be inspected to ensure that the pointer

values are safe to be tracked

● Different virtual machines

○ OpenJDK, GraalVM, J9, Azul Zing

○ Discussion will be limited to OpenJDK

● Garbage Collection

○ Java has number of different garbage collectors

○ All of them move object references, even the mark and sweep collector does

“occasional” compaction

○ We can’t remember object references in BPF maps 😒

Death-march: Java

Death-march: Java
● Garbage Collection

○ All are compacting and moving memory

○ Even the simplest collector moves memory

Free memory GC area

Allocated memory (some is garbage)

At program start

After running for a little bit (GC performs marking concurrently)

GC finishes a full cycle of mark and sweep

live live

GC does compaction

live

Death-march: Java
● Managed stacks

○ Stacks are stored on the heap when virtual threads are used and heap references

move

○ Uretprobes can’t work 😒
● Managed threads

○ Yes, if virtual threads are used

○ There’s a dedicated current thread register, so it’s easy to find a key

● What linkage (or calling convention) does the program use?

○ Uses register calling convention, but it’s not the same as the System V ABI

Solutions for Java
Solutions are somewhat similar to the solutions for Go:

● Use uprobes only, use the dedicated VM Thread register to find a key for BPF maps

● Don’t remember references, assume everything will move

● If you need to read data from the Java heap, read on method enter unless the method

returns a reference

● Instrument more than one method to read something like a received buffer

● We can adapt our argument register macros to match the Java linkage

So we said use uprobes?
● We can only instrument JIT compiled methods

○ Java programs start interpreted, most useful methods get compiled

● JIT compiled methods are difficult to deal with:

○ They are generated on the fly, there are no binary files to inspect

○ The JVM will regularly recompile methods, probes must be dynamically inserted as

compile events happen

○ Inlining is unstable and driven by runtime profiling

■ Multiple symbols need to be instrumented sometimes to overcome this challenge

○ The runtime patches the code, disassembly might not always work for attaching

probes on ‘return’ on some platforms (e.g. x86)

How do we find Java symbols?
● We need to keep monitoring the compiled methods

○ Attach a uprobe to libjvm.so on register_nmethod
○ Alternatively, we can attach a Java agent to get us the compilation events

● If the executable is GraalVM native compiled binary, this is just like any other binary
○ E.g: Java_java_util_zip_Inflater_inflateBytesBytes

● If we started after java, we need to get a list of all existing compiled methods
○ Without JVM options this requires running jcmd or similar programs which attach to

the JVM.
○ If we can control the launch of the java program, we can get a compilation method log

■ -XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation
(e.g. with JDK_JAVA_OPTIONS/JAVA_TOOL_OPTIONS)

Impossible: Interpreters and
Trace Compilers

● Interpreters interpret code

○ There’s are no function/method symbols to attach a probe to

● Partially compiled methods

○ Once called, neverending methods/functions

● Trace JIT compilers (e.g. LuaJIT)

○ No method/function compilation boundaries

○ Only traces of hot-paths

● We can still attach to any native statically compiled libraries the runtime uses

○ E.g: Python makes extensive use of native libraries

What we’ve implemented so far
● We have released full support for Go program instrumentation

● We work on OpenTelemetry observability

○ Java, .NET are well supported with OpenTelemetry auto-instrumentation

○ Our primary interest in Java, .NET and others is related to instrumenting native

compiled binaries, e.g. GraalVM Native Image, .NET Native AOT…

● We’ll be adding support for more user-level instrumentation for more managed runtimes

● eBPF is also great for getting runtime metrics from the managed runtime

○ We can use uprobes to find: GC times, number of goroutines in flight, event loop lag…

● We can instrument programs build on top of managed runtimes by

using eBPF

● Some managed runtime programs are easier to instrument than

others

● Some managed runtime programs are impossible to instrument

● Typical approaches for instrumenting statically compiled programs

must be adjusted to match the runtime environment reality

Summary

● You can find us on the CNCF Slack

● We are also on the Cilium & eBPF Slack

● #ebpf on the Grafana Labs Community Slack

Thank you!

Connect with us

Connect with us at
https://github.com/grafana/beyla

https://github.com/grafana/beyla

